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Subject: Weighted PCM

Summary
A comparison is made between weighted PCM and conventional PCM
from a fidelity viewpoint. .For equal average transmitted power, it
is shown that a weighted PCM syastem 1s capable of reducing the analog
error associated with the reconstructed telemetry message by approximately
an order of msgnitude (equivalent to & signal-to-noise ratio gain of 2 db)
at modergte rf signal-to-noise ratios, Optimum and more practical) near-

optimum systems are analyzed.

Introduction

The elements c;f conventional PCM have been previously discussed
vherein; by the processes of sampling and qusntization, an analog waveform
may be represented by a set of discrete values. These values are usually
expressed as binary numbers, and their electrical equivalents (pulse sequences)
are transmitted over a noisy binary chamnel., Tne pulses noma.ily have
equal smplitudes and widths,and the digit error probability after decoding
at the receiver is the same for all orders in the binary sequence. In
the transmission of numbers, however, the orders of the pulse sequence

have varying degrees of importance with respect to the fidelity of the
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reconstructed analog waveform, That is, for binary numbers the value or
weight of the ith pulse in a sequence is 21'1, vhich is seen to increase
by powers of two as the order i increases. An error in a high order pulse
has considerably more deleterious effect than an error in a lower order
pulse, Therefore from a fidelity viewpoint, it is bemeficial to modify
the PCM process such that account is made of the 1mportahce of a pulse
position. The éighted PCM system analyzed in this report performs this
function. ,s::i‘ |

Some previous work has been reported on weighted PCM with respect
to the criteria of utility a.nii‘signa.l-to-noise mtio.2’3 In this report
a criterion has been chosen which is believed more meaningful to the
telemetry designer. The analyses performed give the specification of an
optimum weighted PCM system from the standpoint of minimum percentege rms
or absolute analog error in the reconstructed waveform, Consideration is
given to errors caused by chénnel noise and errors due to quantization.

A more practical near-optimum weighted PCM system is also analyzed and come

parisons are made with conventional PCM.

sis
The system model chosen is a binary Bymetric PCM channel, per-
turbed by additive gaussian noise, with coherent detection on a bit basis.
The average error ?robability in the detection of the individual pulses
in the PCM tra.in is a function of both pulse amplitude and rms noise present

and is determined from*
@

2, 2
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- : [1 - o(ay/N20)] , (2)
vhere 0 = 2 j‘i exp « x? ax (3)
b

o
*See Glossary for dgfinition of symbolszused, P. 21,




In ord.ina.ry) unweighted PCM each pulse is transmitted at the same amplitude
and therefore all the pi's are equal, i = 1, 2, «--, n, In a code word.
This is the case even though each pulse position has a different weighting
with respect to the analog voltage that the PCM word represents. In a
weighted PCM system, optimally adjusted, all the pulses are transmitted
at different amplitudes such that the p 1'3 decrease with increasing order
of the digit in the PCM word.
" In either system the probability of a single error in the ith

position of a n-digit word is

n
P, (1,m) = », [T (1-p,) (%)
N 41
If
~ (5)

for small digit error probabilities.* For unweighted PCM, since p = p 42

all 1
pi(l,n) =D (6)

The effect of these digit errors on the original analog signal can be ex-
pressed in terms of the rms error eu or év'
For the weighted PCM case, the mean squared analog error of a pulse

group or PCM code word is
n

eZ=) pylime %

1=l

*0Only the effect of single errors are considered here. Double-error results
are discussed later in the section.
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In Appendix 1, it is shown that

1-1
e +q2
i--q

a f
Pag) p ot ®)

i=1

For purposes of camparison it is convenient to normalize Ew to Qm’ the

quantized signal range. Since

Q, = dA(n) = q(2%-1), (9)

[1_3 =17

2—1

(10)

For .the unweighted PCM case the mean squared analog error is

n
2 2
€ = pzei (11)
i=1
n
= q°p Z yi-1 (12)
i=l :
n
- qu 113—'5 (13)

Thus, the rms normalized andlog error of a pulse group is
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The errors given by (10) or (14) represent that fraction of the
total error which is due to'channelhnoise. The total error is comprised
of (10) or (14) plus the error due to quantization of the original
analog signé.l. Ir eq is the error voltage between the actual instantaneocus

signal and its quantized equivalént, the mean squared analog error due

to qua.ntizatioh is q/z
‘ 2
2.1 e de (15)
q q q q
-q/2
= ¢?/12 = 0.0833¢% (16)
and eq’ the rms error is
€, = Y23 (17)
Thus the total rms analog error of a pulse group' normalized to Qm is
[e 2“ ez o2
€ witn - 40 | (18)
q(2°-1) :
and
‘ 2, 2 1/2
[eu €q] :

(19)
wn o g(2Ra1) .
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for the weighted PCM and unweighted PCM cases, respectively, where
2 2
' e given by (8) and (13).
€, awd € areg y{) {3)
Another relation which is needed for the optimization procedure is
the -average power in a PCM code word., For an n-bit word, the average

base band or video signal pmﬁr is
v

p-l Z 8 (20)

i=1
for weighted PCM. For unweighted PCM, all the a i‘a are equal, so

P= az ' (21)

where a= ai all 1

The optimization problem is then to determine the pulse amplitudes
ay in the weighted PCM system such that the total rms ana.log error is a
minimum, subject to a comstraint on the average power P. Since the quanti-
zation error is a constant in (18), it is sufficient to find the a;'s which
minimize (8) subject to the constraint (20). This problem is solved in
Appendix 2 using Lagrange's method of undetermined multipliers, The ex-

pression for the optimum gi's is shown to be

2 2
a P P/o- -1

.%. ==+ .{__,2. (1 - GP%:-L-)]lnlﬁ (22)
o o P/O" - .

As previously mentioned, the above analysis neglected the effects
of more than one digit error per PCM word. In Appendix 3 the effects of
double errors are discussed. - Whereas the analysis for the optimum ai's is

difficult to perform if multiple errors are included, it is relastively simple
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to ascertain how much their presence modifies the previous results. A
modified relation for the rms analog error (upper bound) including single
and double errors was found, wherein the pulée amplitudes a, are set
equal to their optimum values computed in the single error analysis. This

expression, for the weighted PCM case, is

n n-l n ) -
' 2 ' - iel 5.l 1+3-1
Ev -qa{i ptt ™t 4 Y Py > p, [¥ A ]} (23)
1=1 J=1 1=3+1 '

Foi- the unweighted case

2 o) K1 2 G S
€ 3 o 235+ =5
n-1
-2y 19—6 + E 3434 (2%)
J=l

The corresponding normalized errors are readily obtained from

1 e'w
= : 2
oo g(2"-1) ( 2
1§ ' Q'
and | eun = q_—L(zn_l) (26)

-

An additional analysis was performed based on a mean absolute
error criterion rather than a rms criterion, This is presented in Appendix
k. The procedures are very similar and it is shown that the optimﬁn a;'s

are defined by



2 2
8. P/G -1 s
_%_ = P/o + ‘;{"T' [1- Eé_l]lnh (27)
o- G

The normalized analog errors are given by

n
6l - 2
o
and ¥ 1-1
YA
Iéhnl = 1= =D (29)

2%1
for the weighted and unweighted PCM systems, respectively.

Results

The analytic results are plotted in several curves of percentage
analog error versus rf or input gignal-to-noise ratio, P/ZOZ in db.
Moreover, the results of a more practical near-optimum scheme are shown,
Specifications are given for optimum and near-optimum weighting of pulse
orders in a PCM code word.

In Fig. 1, a comparison of weighted axnd unweighted PCM systems is
made,with respect to {The normalized rms analog error due to channel ncise
along for code word lergths of 3, 10yand 15 and several signal-to-noise
retios, In Fig. 2 & similer comparison is made with respect tc the total
rms analog error, including quantization noise. Im Fig. 3 the effects of
including double errors are shown for a code-word length of 1C. The

significant results are:
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NORMALIZED RMS ANALOG ERROR DUE TO CHANNEL NOISE, (ey€wn in %)

/l /! 1/
/ /
/

D N ‘\ “
\\ X \\
AN AV
N ANEAN
AN
] \\ \\
2 | \ \\eun n=5,I0,5
\\\‘ \‘\\ \‘\\“\‘ __ewn ’ — ]
\\ \\ \ \,\A/
h ewnx \\
Gwn\ n=lO\ \\
0> n = 15—, )
\\ X “
N\ Y\
- = NN VA U
A\ Y
N\ AN\
04 \‘“ \ \\
\ X\
2\ —
\ N \3
€un ¢ Unweighted PCM Error \ \\ \\‘
€wn’ Weighted PCM Error \
10’3 where n = word length \
\“‘ ‘l
\
=
\
\
=6
I0 L_\f . . . | !

Fig.

1
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Comparison of normalized rms analog errors, due to channel noise,

of weighted and unweighted PCM systems for several code lengths
and signal-to-noise ratios.
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TOTAL NORMALIZED RMS ANALOG ERROR, (€4, €ptn in %)

INPUT SIGNAL-TO-NOISE RATIO, (P/20%db)
Comparison of total normalized s analog errors of weighited and
unweighted PCl systems for several code lengths and signal-to-
noise ratios.
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NORMALIZED RMS ANALOG ERROR DUE TO CHANNEL NOSE,{eyn ,€un in %)
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Fig. 3 Comparison of normalized rms analog errors,due to channel noise,
of weighted and unweighted PCM systems, including the c¢lTect of
double errors, for a code length n=10, and several signal-to-
noise ratios.
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1. OCptimally weighted PCM system performance ixhproves with code length,

whereas unweighted PCM system 'perfoma.nce is constant for n > 5.
2. TFor a codeiyord length of n = 10, and moderste input yf signal-to-ncise
ratios, the rms analog error is reduced by sbout an qrder of magritude.
For large signal-to-noise ratios the quantizajcic;n error is dominaut
and thereforéweighted and unweighted PCM systems are eq_ﬁal in per-
formance. & h
4. The analog error due to channel noise is increased only slightly

at low signal-to-noise ratios vhen double errors per code word are

included, |

Fig. 4 gives the relative pulse amplitudes required for each pulse

position in an optimally weighted FCM word as a function of signsl-to-ncise
ravio. Since received signasl-to-noise ratio cen be expected to vary wiin
+time s it is not feasible to achieve this optimal weighiting combinuously
unless very elaborate equipment is designed. An alterzmative is the desizn
of a near-optimum system in which the pulse weightings are kept fixed at
the ideal values associated with some mean signal-to-noise raiio. In Fig.
5, modified values for the a.i’s are given for the case wvhere the
pulse weightings are held fixed at the ideal values associated with the
signal-to-noise ratio for which the analog error due to chanrel nqise is
equal to the quantization error. Thus for a code-word length n = 10, this
cccurs ab P/Zc‘z = 9.4 d&., The performance of this nesr-optimum system is
shown in Figs. 6 and 7. It is seen that, over a wide range of moderate
signal-tc-noise ratios, iosu of'/the advantage due to weight?ipg is main-
taired. At signal-to-noise ré.'tios removed from ‘Bhe design value of 9.4 db,

the weighted performance &approaches that of the unweighted PCM system.
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RELATIVE PULSE AMPLITUDES, (aj/Y20)
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NORMALIZED RMS ANALOG ERROR DUE TO CHANNEL NOISE, (e, €, in %)
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TOTAL NORMALIZED RMS ANALOG ERROR , (€y4n€usn in %)

Fig. 7
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A final set of curves in Fig. 8 give the results obtained by
chocsing a different performemce criterion, ramely - mean gbsolute analog
error due to channel noise, Comparison with the rms analog error criterion

is also shown. Fig. § indicates the reguired pulse amplitudes for this case.

Conclusgion

Weighted PCM is a scheme which utilizes channel resources
efficiently for the preservation of the fidelity or accuracy of data. In
convraest to the normal viewpoint of minimizing digit error probability,

a weighted PCM system is designed to favor the communicgtion reliability of
important portions of messages. It is shown to be capable of improving
performarce withcut the uée of redundancy or error detecting and correctirg
coding,

The attainzble improvement over an ordinary PCM system is a function
of code length_and signal-to-noise ratio. For example, &t an average rf
inpu% sigral-to-noise ratic of 8 db, and cole length of 10 binary digit R
the total normalized rms analog error is reduced from about 0,80 percent
to 0,01 percent by optimally weighting the pulse amplitudes in the PCM word.
This 1is eguivalent to an effective gignal-to-noize ratio gain of 2 db.
Greaster improvement is attained with the use of longer cole lengths. Moreover
the analysis of a more practical weighted PCM system, wherein the pulse weightirgs
are held fixed at the i1deal weightings azsociabed with & mean signal-to-noisze
ratio, shows that system performance is degraded only slightly over a wide
' remge of chammel S/N ratios.

' The requirea pulse weightings may be obtained by varying power 0
different orders, or by effectively increasing the received signal-to.znoise
ratio by adjusting the ban&wi@fhs andfor time of ﬁhé individual pulses.
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In all schemes, the pulse parameters - power, bandwidth, and time, should
te limited by some constraint on the tctal amounts of the availshle re-
gources. Moreover, a similar weighting effect may be echieved by emplcying
varighle null-zone reception and decision feedback., The thresholds
establishing the null~zone width may be set increasingly further apar: as
the order of the pulse in the code sequence increases. In this manmer,
increased reliability is obtained at the expense of ircreased pulse trzas-

mission time.
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Ap(n)

bosby

Amplitude of ith order pulse, i = 1,2, --- n.

Maxcimum analog range of quantized samples per unit
quantization interval = Qp/g= 2B-1.

Bias voltages.

Decimal equivalent of jth coded word
n

i-1
= 7 w2 ) - ol

i=1

Analog error of ith order pulse, + qzl l.
Absolubte amalog error of ith order, lqzl'H.
Analog error of jth order pulse, + q23'l

Maximm analcg error of both ith and jth pulse,

Mean absolube analez error of @ pulse group due to
chanmel noise in an unwelshie

RiS anslog error of a pulse group Cue L0 charnel
noxze in g welgnted PCM zysten,

Nean gbgoluse analog error of a Uulse group due to
channel noise in a weighted PCM system.

R¥S analog error of a pulse group due to channel
roise normalized in ar woweighted PCM system.

Meen aosclulbe analog errsr of a pulse group due to
charmel noise normalized To Q) in an unweighted
CM system.




i3

pij(z,n)

g

W2

[iy]

/j-‘/

Total rms analog error of a pulse group in an
unweighted PCM system.

Total rms anslog errcr of & pulse group normalized
to Q, i» aa an unweighted PCM sy tem.

RMS analog error of & pulse group due to channel
noise normalized o Qm in a weighted PCM systen.

Mean shsolute amalog error of a pulse group due
+0 channel roise normalized to Qy in a weighted
PCM system.

Total rms aralog error of a pulse group in a weighted
PCM system.

Total rms arzlog error of a pulse group normalized
to Qm in a weighted PCM gysliem.

RMS anslog error of a pulse group due to channel
roisge in an wweighted PCM system including single
and double errors per pulse group.
RMS smglog errcr of a pulse group due vO channel
noiﬁe in a wei nt d PCA gystenm including single

3 double errors per polss grlup.

Word lemgth of pulze g*o;nﬁiﬂz*“lze& :amnle)in
binary digits.

Digi EYTCY Pwo‘k Dilluy ir a- u_:_'_-_"»aigh* d PCM Syste‘:.’.

Error protatility of ith digit in a weighit.l PCM system.

Prcnebility of single error im tre ith poesition of
N .
S

& LoGogit wor

Prcbarility of a double error im the 1th and Jth
N Jd
position of & m-digit word.

Aversge tase-band sigral power.
Amplitudes of guastizaticz inlerval.
Peakobo-peak guaxmbized gignel razge.

) hal
Number ¢f gusmbized levels, =27,



Voltage of jth quentum level, ] = 1,2,----,8,
Peak-to-peak signal amplitude.

Weight of ith order pulse, 2i-1.
Average channel noise power.

2 ( -x?
Error integral, — e = dx,
Jx
o
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Appendix 1

Relations Between the Parameters of an Analog Signal

and its Sampled-Quantized PCM Equivalent

The sketches shown below indicate the notation to be used for
the two cases considered: A) the analog signal may assume both positive
and negative values between + vm/z and B) the analog signal may assume
only positive values betweenw and Vp.*

# + v, /2 2 + +Vpy
A 1 /2 1
2 - _L+q/2 2 A 4q/2
L/ I —E 0 ; e U
v ; 1o
{ ° f | 231';//2 + 0

SYMMETRICAL CASE UNSYMMETRICAL CASE

*See Glossary for definition of symbols, p, 21.

.
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For the symmetrical case depicted in A, the jth quantum

level v.1 is

VJ('!) - %’m - Q(J'l) J=1,2,0=-,8 (l)

§

Since Q = (s-1)q and 8 = zn*‘

vy = 2 2D, (2)
or ; |
ACEE TRt (3)
Moreover, |
V=g ta
-Q, = = 5% (4)

Thus, (3) can be expressed in terms of Vv, as
vi(4) = =B [+ 1 - 23] ’(ﬂ
A oD+l
J =1,2,-—-,8=2"
For the assymmetrical case depicted in B i ——
vd(+) - vJ(t) + Vp /2 (6)
Substituting (5) into (6) gives

v
vy(+) = 2%_5 [22%2 4 2 . k,) (7
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The maximm amplitude excursion of an n-digit PCM word is

determined by taking the difference v; - vg. Thus in (5) or (7)

R q(2"-1) - (8)

Defining A (n) a§ the maximm anslog range of the quantized samples
) ‘ !

per wnit quantizajiomn interval,

Vl- v

A (n) = g
- 2R | (9)
A

Since Qm =V - Vg

ORR ML (10)

The relation between ‘v‘1 and its coded equivalent is for the

symnetrical case,

vd(:) =q d:j +b, . (11)

n

vy = ) %3 v * vyl (12)
where xi(J) = 0,1 (13)
and v, = ei-1

It is presumed that the code increases from



00 === 0 for vs(i-)
to 11 === 1 for vl(t) .
Since from inspection of plot A or from (5)

vo(#) = - 2 [8-1] = - 3 [27-1]

n

v, (1) = q{ Z x, (3)w;-2""1+ 2’}

i=1

or n

vj(-l-) - :—E{Z xi('a)vi-zn'l-i- ']}

1=l

(15)

(1%)

(16)

For the asymmetrical case,the relation between v J(+) and its

coded equivalent is

VJ(-I-) = q dJ + bl

=qdy + vg(+)

=q 4, +4q/2
n

= Q{Z xi(j)wi + 2-1}
1=l

or

n
vy(+) = :—2{ Z xy(3)wy + 2'1} 3 x4(3) = 0,1

i=1

(17

(18)

(19)

(20)

(21)



It is again presumed that the code correspondence is

00 === O for VB(-'I-)
11 === 1 for v;(+)

From (15) and (20) the error in amplitude resulting from
noise on the '!-;elunetry. channel is seen to be determined merely by the
msnner in which the received xi( J)'s differ from the transmitted
x.i(J)'s. letting v, * be the received voltsge level, the analog error

J
per signal sample when transmitted by PCM is from (15) or (20)

vJ - v"* - q(dJ - d.‘i*) (?2)

If dj differs from dg* due to an error in the ith digit of their

corresponding coded words, then

i-1

°1'v3"’3*(i)'fq"1’i'q2 (23)
Similarly if two digit errors per PCM word occur, the maximum analog
error is

eq = ey + ea = + q[2‘1-1 + 21-1] — (21")

As is shown in Appendix 3, the inclusion of (24) into the determination
of rms analog error, increases the error only slightly. This Justifies
using (24) for finding an upper bound on é"‘ and eliminates the need for
considering the various combinations of two-digit errors and their

equivalent analog errors.
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; Appendix 2

Optimm Weighting of Individual Pulse Amplitudes in an n-Digit PCM Word

for Minimm RMS Analog Error Subject to an Average Power Limitation.

The mean squared analog error due to chanmnel noise of a pulse

group or word in a weighted PCM system is

if only single digit errors per word are considered.

€?.

w

n

i=1

threshold p :!.( 1,n) may be approximated by

Since

or

(1) becomes

The average video signal power of a weighted PCM word is

: n
py(1,n) = p; I | (1-p,) 22 2y

€

J=1
I

2 2 i-1
v — 4 z pi‘h

1=l

) mimes

(1)

Above the system

(2)

(3)

(%)

(5)

(6)



Hence, the problem reduces to finding the a.i's which will minimize (5)
subject to the constraint (6). This problem may be solved using Lagrange's
method of undetermined miltipliers. If )\ is the undetermined multiplier,

it is necessary to find the appropriate set of a 1'5 from the (n+l) equations

~ Vra=o i=1,2,--,n (N
o,
and g=0 (8)
where
F= F(a.l,az,---,an, Q\) - f(alyaz:“':ah) + )\8(31:92""an) (9)
& | 2
£(a l’ 2:"' ) - %2 = q2 Z Pil"i-l (10)
1 |
.. n )
and 8(51:52)""!%) =P - ;'I';Z"iz (1)
i=1

Moreover, for the system model assumed, i.e. & symmetric binary channel

with additive gauésian noise and coherent detection

= 2
-n /20? dn (12)
o

'd
]
|H

H

Thus from (7) through (12)

1-1dpy 2 |
S et S 1)‘ =0 . 1=1,2,---,n (13)

- day J
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a2 S - (2,
where i, = d_exp (20 2) (14)

Combining (13) and (14)

’

2
a
q21‘ i-1 o

exp - (

22z 6~
5) + : A a = 05 1=1,2,--,n (15)

e
This equation may be solved for the a.i's most easily by tke method of
successive approximations. Noting that the first term in (15) is much
more sensitive than the secdnd term to variations in a;, a first approxi-
mation 1s to set the first term equal to a constant, C. Since

2 2
2yi-1 aj aj 2
q“k exp - ( -exp-{—-— - (1-1) lnh-lnq_} (16)

26~ 20~2

then,
a. 2 2
- +(i-1) In 4 + Ing“ + C = O
20~ .
or 8,2 = (i-1) o~° 1In16 + K (17)
with K = 2 (C + 1ag®)o-’

From (11) and the identity

i (1-1) = n(n-1) _ (18)

2

1oL

n

T T P

i=1 i
or

Kep. D 2000 (19)
2
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Thus, substituting (19) into (17)

SIS (Z2)] 116 (20)
oZ o2 2

i
A closey approximation is obtained by substituting (20) into the

second term of _(;15) only, and solving for the new a,'s. Hence

i
a 2 a
20 Y
-2\2x Mo~
vhere K = o a constant, (22)
1 2
nq
and
a 2 n+l 2
_1=2._=k2-1n[P+(1-_-)o~ 1n16]
& 2
+(i - 1) 116 (23)

vith k, & constant. Utilizing (11) again, k,_ may be evaluated as

2

k2=P/62 -

1nl6 + - ln[P+(i-—;)o" 1n16] (24)

The a,’ s)therefore)are_from (23) and (24)

a2 P n+l
.j_.é-= -—é'l'(i-c-—-) lnl6
o~ o 2

- 1n[p+[1-(’-11-;17)]o~2 1n16]
n
1 n+l, . 2
+ z z ln[P-l-{i-(—é—)]a- 1nl6 (25)
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2
ay P Plo- -1 n+l
o o- P/s-

This expression is most accurate for parameters which meet the condition
n+l
(i -3 )1n16

2
P/o~

<1 (27)

Equation (26) is slightly different than that reported by Bedrosianz, where

the correction factor for the ;}s\econd term is

rather than

It is noted that these factors are approximately equal for most useable

P/d’*z's.



Appendix 3

Increase in Analog Error due to Chamnel Noise with the Inclusion of the

Effects of Double Errors in an n-Digit PCM word

In appendix 2 the minimum rms analog error was determined
neglecting the effects of more than one error per PCM code word. Whereas
the a.nalysis.\for the determingtion of the optimm &y
perform if mul‘l;iple errors per code word are included, it is relatively

ts is difficult to

straightforward to ascertain how much their presence modifies the previous
results., It is the purpose of this appendix to determine a modified re-
lation for the rms analog error due to single pluse double errors, where-
in the pulse amplitudes a4 are set equal to their optimm values computed
in the single error analysis.

The probability of a double error in the ith and jth position

of a n-digit word is

n
p (2,0) =pp | | (1-p,) (1)
i i} R
k=1
kfi,3
~ pipj gbove threshold (2)

Therefore the mean squared analog error (maximm) of a pulse group due

t0 chamnel noise becomes

-3 -



.2 A
€& = Z pi(l’n)eiz * ZZ pig(z’n)edz
1 i3

n n n
i-1

2 3=1 4-1.2
= q Z pih + pipd(z 27 ) (3)
=l i= le
143

where ey, the maximm analog error due to errors in both ith and jth pulse is¥*

-1 i-1
@ eral w2 (%)
Rearranging (3) gives
n n-1 n
b i-1 i-1 =1 i+3-1
ey pp e Y py ) p TRV 6)
i= j:l =j+1

The normalized rms error for weighted PCM is then

. €

€. = (6)
o g(2"-1)
For the unweighted or normal PCM case
€f=) pame?+ YT v, (2087 (7)
u A | i37777a
1 i}
2_ .2
vhere P, (g,m)xp,” =0

and Pi (1,n) ~Pp

#Tt is to be noted that the maximm effect of double errors has been
assumed. The result (3) therefore gives an upper bound, which proves to be
a tight bound, ) :
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Z‘_ i1 +pz Z [yi-1,,3-1, 1+,31]} )

i=1 J=1 1i=j+l

Summing the terms in (8) gives

2 ’-l-n-l n n-1
' 2 2 2\ W a(k -1)
= — + - P crmmmcm————
e, =4 {p T *? [(=+3)3 =3
n-1
-2l 2-_96 + 7 .ﬂv“'ll} (9)
J=1

The normalized rms error for unweighted PCM is then

'
|_éu

= 10
€. - (10)
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Appendix 4

Optimm Weighting of Individual Pulse Amplitudes in an n-Digit PCM Word

for Minimum Mean Absolute Analog Error Subject to an

Average Power Limitation

The mean absolute analog error due to channel noise of a pulse

group or word in a weighted PCM system is

l€d =) »y(3,m) |ey) (1)

i=1

if only single digit errors per word are considered. Since

p,(1,0) x ,

and \ei\ = goi-1

. n
i-1
€ = e2_»g (2

In an analogous manner to the derivation in Appendix 2 , with the only

change being

f(al,az,--jan) = ]6wl =g Zpizi-l (3)

i=1

it can be readily shown that the optimmm ai's are defined by

2 -
3_12‘_,,,1_’-+p/°21[1-’if]1nu (%)
S o? p/42 e :
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